Tuesday, August 16, 2005

Some background on the field of agriculture

Agriculture is the process of producing food, feed, fiber and other desired products by the cultivation of certain plants and the raising of domesticated animals (livestock). The practice of agriculture is also known as farming, while scientists, inventors and others devoted to improving farming methods and implements are also said to be engaged in agriculture.

More people in the world are involved in agriculture as their primary economic activity than in any other, yet it only accounts for four percent of the world's GDP.

Agriculture can refer to subsistence agriculture, the production of enough food to meet just the needs of the farmer/agriculturalist and his/her family. It may also refer to industrial agriculture, (often refered to as factory farming) long prevalent in "developed" nations and increasingly so elsewhere, which consists of obtaining financial income from the cultivation of land to yield produce, the commercial raising of animals (animal husbandry), or both.

Agriculture is also short for the study of the practice of agriculture�more formally known as agricultural science.

Increasingly, in addition to food for humans and animal feeds, agriculture produces goods such as cut flowers, ornamental and nursery plants, timber or lumber, fertilizers, animal hides, leather, industrial chemicals (starch, sugar, ethanol, alcohols and plastics), fibers (cotton, wool, hemp, and flax), fuels (methane from biomass, biodiesel) and both legal and illegal drugs (biopharmaceuticals, tobacco, marijuana, opium, cocaine). Genetically engineered plants and animals produce specialty drugs.

In the Western world, the use of gene manipulation, better management of soil nutrients, and improved weed control have greatly increased yields per unit area. At the same time, the use of mechanization has decreased labour requirements. The developing world generally produces lower yields, having less of the latest science, capital, and technology base.

Modern agriculture depends heavily on engineering and technology and on the biological and physical sciences. Irrigation, drainage, conservation and sanitary engineering, each of which is important in successful farming, are some of the fields requiring the specialized knowledge of agricultural engineers.

Agricultural chemistry deals with other vital farming concerns, such as the application of fertilizer, insecticides (see Pest control), and fungicides, soil makeup, analysis of agricultural products, and nutritional needs of farm animals.

Plant breeding and genetics contribute immeasurably to farm productivity. Genetics has also made a science of livestock breeding. Hydroponics, a method of soilless gardening in which plants are grown in chemical nutrient solutions, may help meet the need for greater food production as the world's population increases.

The packing, processing, and marketing of agricultural products are closely related activities also influenced by science. Methods of quick-freezing and dehydration have increased the markets for farm products (see Food preservation; Meat packing industry).

Mechanization, the outstanding characteristic of late 19th and 20th century agriculture, has eased much of the backbreaking toil of the farmer. More significantly, mechanization has enormously increased farm efficiency and productivity (see Agricultural machinery). Animals, including horses, mules, oxen, camels, llamas, alpacas, and dogs; however, are still used to cultivate fields, harvest crops and transport farm products to markets in many parts of the world.

Airplanes, helicopters, trucks and tractors are used in agriculture for seeding, spraying operations for insect and disease control, transporting perishable products, and fighting forest fires. Radio and television disseminate vital weather reports and other information such as market reports that concern farmers. Computers have become an essential tool for farm management.
Farming, ploughing rice paddy, in Indonesia
Enlarge
Farming, ploughing rice paddy, in Indonesia

According to the National Academy of Engineering in the US, agricultural mechanization is one of the 20 greatest engineering achievements of the 20th century. Early in the century, it took one American farmer to produce food for 2.5 people, where today, due to engineering technology (also, plant breeding and agrichemicals), a single farmer can feed over 130 people [1]. This comes at a cost, however, of large amounts of energy input, from unsustainable, mostly fossil fuel, sources.

Animal husbandry means breeding and raising animals for meat or to harvest animal products (like milk, eggs, or wool) on a continual basis.

In recent years some aspects of industrial intensive agriculture have been the subject of increasing discussion. The widening sphere of influence held by large seed and chemical companies, meat packers and food processors has been a source of concern both within the farming community and for the general public. There has been increased activity of some people against some farming practices, raising chickens for food being one example. Another issue is the type of feed-stock given to some animals that can cause Bovine Spongiform Encephalopathy in cattle.

The patent protection given to companies that develop new types of seed using genetic engineering has allowed seed to be licensed to farmers in much the same way that computer software is licensed to users. This has changed the balance of power in favor of the seed companies, allowing them to dictate terms and conditions previously unheard of. Some argue these companies are guilty of biopiracy.

Soil conservation and nutrient management have been important concerns since the 1950s, with the best farmers taking a stewardship role with the land they operate. However, increasing contamination of waterways and wetlands by nutrients like nitrogen and phosphorus are of concern in many countries.

Increasing consumer awareness of agricultural issues has led to the rise of community-supported agriculture, local food movement, slow food, and commercial organic farming, though these yet remain fledgling industries.